Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease.

نویسندگان

  • Habib Samady
  • Parham Eshtehardi
  • Michael C McDaniel
  • Jin Suo
  • Saurabh S Dhawan
  • Charles Maynard
  • Lucas H Timmins
  • Arshed A Quyyumi
  • Don P Giddens
چکیده

BACKGROUND Experimental studies suggest that low wall shear stress (WSS) promotes plaque development and high WSS is associated with plaque destabilization. We hypothesized that low-WSS segments in patients with coronary artery disease develop plaque progression and high-WSS segments develop necrotic core progression with fibrous tissue regression. METHODS AND RESULTS Twenty patients with coronary artery disease underwent baseline and 6-month radiofrequency intravascular ultrasound (virtual histology intravascular ultrasound) and computational fluid dynamics modeling for WSS calculation. For each virtual histology intravascular ultrasound segment (n=2249), changes in plaque area, virtual histology intravascular ultrasound-derived plaque composition, and remodeling were compared in low-, intermediate-, and high-WSS categories. Compared with intermediate-WSS segments, low-WSS segments developed progression of plaque area (P=0.027) and necrotic core (P<0.001), whereas high-WSS segments had progression of necrotic core (P<0.001) and dense calcium (P<0.001) and regression of fibrous (P<0.001) and fibrofatty (P<0.001) tissue. Compared with intermediate-WSS segments, low-WSS segments demonstrated greater reduction in vessel (P<0.001) and lumen area (P<0.001), and high-WSS segments demonstrated an increase in vessel (P<0.001) and lumen (P<0.001) area. These changes resulted in a trend toward more constrictive remodeling in low- compared with high-WSS segments (73% versus 30%; P=0.06) and more excessive expansive remodeling in high- compared with low-WSS segments (42% versus 15%; P=0.16). CONCLUSIONS Compared with intermediate-WSS coronary segments, low-WSS segments develop greater plaque and necrotic core progression and constrictive remodeling, and high-WSS segments develop greater necrotic core and calcium progression, regression of fibrous and fibrofatty tissue, and excessive expansive remodeling, suggestive of transformation to a more vulnerable phenotype. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00576576.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo assessment of the risk profile of evolving individual coronary plaques: a step closer.

Coronary Heart Disease Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease Habib Samady, MD; Parham Eshtehardi, MD; Michael C. McDaniel, MD; Jin Suo, PhD; Saurabh S. Dhawan, MD; Charles Maynard, PhD; Lucas H. Timmins, PhD; Arshed A. Quyyumi, MD; Don P. Giddens, PhD Clinical...

متن کامل

Coronary Heart Disease Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease

Background—Experimental studies suggest that low wall shear stress (WSS) promotes plaque development and high WSS is associated with plaque destabilization. We hypothesized that low-WSS segments in patients with coronary artery disease develop plaque progression and high-WSS segments develop necrotic core progression with fibrous tissue regression. Methods and Results—Twenty patients with coron...

متن کامل

The effect of turbulence model on predicting the development and progression of coronary artery atherosclerosis

A severe case of stenosis in coronary arteries results in turbulence in the blood flow which may lead to the formation or progression of atherosclerosis. This study investigated the turbulent blood flow in a coronary artery with rigid walls, as well as 80% single and double stenoses on blood flow. A finite element-based software package, ADINA 8.8, was employed to model the blood flow. The hemo...

متن کامل

Systemic atherosclerotic plaque vulnerability in patients with Coronary Artery Disease with a single Whole Body [FDG]PET-CT scan

Objective(s): Cardiovascular disease is a leading cause of morbimortality with over half cardiovascular events occurring in the asymptomatic population by traditional risk stratification. This preliminary study aimed to evaluate systemic plaque vulnerability in patients with prior Coronary Artery Disease (CAD) with a single Whole Body [FDG] PET-CT scan in terms of plaq...

متن کامل

Coronary Heart Disease Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Plaque Characteristics The PREDICTION Study

Background—Atherosclerotic plaques progress in a highly individual manner. The purposes of the Prediction of Progression of Coronary Artery Disease and Clinical Outcome Using Vascular Profiling of Shear Stress and Wall Morphology (PREDICTION) Study were to determine the role of local hemodynamic and vascular characteristics in coronary plaque progression and to relate plaque changes to clinical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 124 7  شماره 

صفحات  -

تاریخ انتشار 2011